加入收藏 | 设为首页 | 会员中心 | 我要投稿 葫芦岛站长网 (https://www.0429zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 云计算 > 正文

5G科技中边缘计算的价值体现

发布时间:2021-05-12 11:53:30 所属栏目:云计算 来源:互联网
导读:一般来说,传感器、摄像头、麦克风以及一系列不同的物联网和移动设备从其所在位置收集数据,再发送到集中式数据中心或云中。 数据显示,到2020年,全世界会有超过500亿台智能设备实现连接。这些设备每年将产生以泽字节(ZB)计算的数据,到2025年将增长到150 Z

一般来说,传感器、摄像头、麦克风以及一系列不同的物联网和移动设备从其所在位置收集数据,再发送到集中式数据中心或云中。

数据显示,到2020年,全世界会有超过500亿台智能设备实现连接。这些设备每年将产生以泽字节(ZB)计算的数据,到2025年将增长到150 ZB以上。这些数据发送到云会带来一些重大问题。

首先,150ZB的数据会造成容量问题。其次,将大量数据从其原始位置传输到集中式数据中心代价高昂。据估计,目前只有12%的数据得到了分析处理,而只有3%的数据有助于产生有意义的结果,剩余97%的数据在收集和传输之后,就被浪费了。第三,存储、传输和分析数据能耗巨大。因此,我们需要找到一种有效的方法来降低成本并减少浪费。

引入边缘计算,在本地存储数据,可以降低传输成本。同时,利用AI功能也能够消除数据浪费。例如,现在正在使用中的新型低功耗边缘计算服务器CPU,它们以GPU和ASIC或一系列芯片的形式连接到AI加速 SoC。

除了解决容量、能源和成本问题外,边缘计算还可以提高网络可靠性,因为应用可以在发生普遍的网络中断期间继续运行,通过清除某些威胁配置文件(例如全局数据中心拒绝服务 (DoS) 攻击),可以提高安全性。

最重要的是,边缘计算能够为实时场景(例如虚拟现实商场、移动设备视频缓存)缩减延迟,同时在自动驾驶汽车、游戏平台或快节奏制造等环境中创造许多新的应用机会。

5G成为边缘计算的最强推动力

5G基础架构是边缘计算最具说服力的驱动力之一。5G电信提供商发现,除了传统的数据和语音连接之外,他们还可以构建生态系统以托管独特的本地应用。通过将服务器置于基站旁边,蜂窝流量提供商可以向第三方主机应用开放其网络,从而改善带宽和延迟。

Credence Research认为,到2026年,整个边缘计算市场的价值将为96亿美元左右。相比之下,Research and Markets分析认为,移动边缘计算市场将从今天的几亿美元增长到2026年的超过27.7亿美元。尽管电信行业可能是发展最快的增长动力,但是据估计,它们仅会占据边缘计算市场总量的三分之一。这是因为web scale、工业和企业集团也将为其传统市场提供边缘计算硬件、软件和服务,期望边缘计算也将开创新的应用机遇。

比如目前大众快餐店的厨房正朝着更加自动化的方向发展,以确保食品质量,减少员工培训,提高运营效率并确保客户体验达到预期。Chick-fil-A 是一家连锁快餐企业,2018 年 他们宣称: “通过提高厨房设备智能化,我们能够收集更多数据。通过这些数据,我们可以构建更多智能系统,进而拓展业务。” 他们还指出,在边缘计算的帮助下,许多餐厅现在可以处理的业务量提高到之前的三倍。

总体而言,成功的边缘计算基础架构需要结合本地服务器计算功能、AI 计算功能以及与移动/汽车/IoT 计算系统的连接。

用实例了解边缘计算

为了解使用边缘计算带来的延迟改善优势,罗格斯大学和 Inria 使用 Microsoft HoloLens分析了边缘计算(或称“边缘云”)的可扩展性和性能。

在案例中,HoloLens 读取条形码扫描仪,然后使用建筑物中的场景分割功能将用户导航到指定房间,并在 Hololens 上显示箭头。该过程同时使用了映射坐标的小数据包和连续视频的较大数据包,以验证边缘计算与传统云计算相比延迟的改善。HoloLens 先读取二维码,然后将映射坐标数据发送到边缘服务器,该服务器使用了 4 个字节加上标头,花费了 1.2 毫秒 (ms),服务器找到坐标,并通知用户该位置,总共耗时 16.22 ms。如果将同样的数据包发送到云,则大约需要80ms。

同样,他们还测试了在使用 OpenCV 进行场景分割以将 Hololens 的用户导航到适当位置时的延迟。HoloLens 以 30 fps 的速度流传输视频,并在边缘计算服务器中以 3.33 GHz 的频率在配备 15GB RAM 的 Intel i7 CPU 上处理图像。将数据流传输到边缘计算服务器需要 4.9 ms,处理 OpenCV 图像额外花费了 37 ms,总计 47.7 ms。云服务器上的相同过程花费了将近 115 ms,清楚显示了边缘计算降低延迟的明显优势。

该案例研究显示了边缘计算在降低延迟方面的显著优势,但是未来还会有更多新技术可以更好地实现低延迟。

5G 概述了当今延迟少于 1ms 的案例,而 6G 已经在讨论将其降低到 10 微秒 (µs) 的问题。5G 和 Wi-Fi 6 会增加连接带宽,其中5G 预计将带宽提高到 10Gbps,而 Wi-Fi 6 已经支持 2Gbps 带宽。AI 加速器声称场景分割的时间少于 20µs,这与上述示例技术论文中引用的 Intel i7 CPU 在大约 20ms 内处理每个帧的速度相比,又有了显著进步。

显然,如果边缘计算表现的比云计算更具优势,那么将计算全都转移到边缘设备中不是最好的解决方案吗?很不幸,目前并不是所有的应用程序都是如此。在 HoloLens 案例研究中,如果数据使用的 SQL 数据库太大,则无法存储在耳机中。今天的边缘设备,特别是发生物理磨损的设备,没有足够的计算能力来处理大型数据集。除了计算能力之外,云或边缘服务器上的软件比边缘设备上的软件开发成本更低,因为云/边缘软件不需要压缩到更小的内存资源和计算资源中。

由于某些应用程序可以根据基础架构不同位置的计算能力、存储能力、存储器可用性和延迟能力来合理地运行,因此无论是在云中、在边缘服务器还是在边缘设备中,未来的趋势是混合计算能力,边缘计算是建立全球混合计算基础架构的第一步。

(编辑:葫芦岛站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!